Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations
نویسندگان
چکیده
Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed.
منابع مشابه
The role and mechanisms of zinc oxide nanoparticles in the improvement of the radiosensitivity of lung cancer cells in clinically relevant megavoltage radiation energies in-vitro
Objective(s): Semiconductor zinc oxide nanoparticles (ZnO NPs) have unique properties, such as inherent selectivity and photosensitization effects under ultraviolet (UV) radiation. ZnO NPs serve as promising anticancer agents. However, UV radiation limits their penetration into the body. In most clinical settings, it is essential to use high-energy photons in the treatment of deep-seated tumors...
متن کاملMolecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs
BACKGROUND Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. OBJECTIVES The aim of this review is to summarize the exis...
متن کاملToxicity of Nanoparticles and an Overview of Current Experimental Models
Nanotechnology is a rapidly growing field having potential applications in many areas. Nanoparticles (NPs) have been studied for cell toxicity, immunotoxicity, and genotoxicity. Tetrazolium-based assays such as MTT, MTS, and WST-1 are used to determine cell viability. Cell inflammatory response induced by NPs is checked by measuring inflammatory biomarkers, such as IL-8, IL-6, and tumor necrosi...
متن کاملRoute of administration induced in vivo effects and toxicity responses of Zinc Oxide nanorods at molecular and genetic levels
Zinc oxide (ZnO) nanoparticles have received growing attention for several biomedical applications. Nanoparticles proposed for these applications possess the potential to interact with biological components such as the blood, cells/ tissues following their administration into the body. Hence we carried out in vivo investigations in Swiss Albino Mice to understand the interaction of ZnO nanorods...
متن کاملRoute of administration induced in vivo effects and toxicity responses of Zinc Oxide nanorods at molecular and genetic levels
Zinc oxide (ZnO) nanoparticles have received growing attention for several biomedical applications. Nanoparticles proposed for these applications possess the potential to interact with biological components such as the blood, cells/ tissues following their administration into the body. Hence we carried out in vivo investigations in Swiss Albino Mice to understand the interaction of ZnO nanorods...
متن کامل